Difference between revisions of "280G F12"
Line 94: | Line 94: | ||
'''Implementation:''' | '''Implementation:''' | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=992977&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DThe+clock+distribution+of+the+POWER4+microprocessor The clock distribution of the POWER4 microprocessor] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1696203&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DA+5GHz+duty-cycle+correcting+clock+distribution+network+for+the+POWER6+microprocessor A 5GHz duty-cycle correcting clock distribution network for the POWER6 microprocessor] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=912694&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DMulti-GHz+clocking+scheme+for+Intel+Pentium+4+microprocessor Multi-GHz clocking scheme for Intel Pentium 4 microprocessor] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6105340&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DMyth+busters%3A+Microprocessor+clocking+is+from+mars%2C+asic%E2%80%99s+clocking+is+from+venus%3F Myth busters: Microprocessor clocking is from mars, asic’s clocking is from venus?] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=726547&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DClocking+design+and+analysis+for+a+600-MHz+Alpha+microprocessor Clocking design and analysis for a 600-MHz Alpha microprocessor] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=475708&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DA+300-MHz+64-b+quad-issue+CMOS+RISC+microprocessor A 300-MHz 64-b quad-issue CMOS RISC microprocessor] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=200434&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DA+200-MHz+64-b+dual-issue+CMOS+microprocessor A 200-MHz 64-b dual-issue CMOS microprocessor] | ||
+ | |||
+ | [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=912693&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DThe+design+and+analysis+of+the+clock+distribution+network+for+a+1.2GHz+alpha+microprocessor The design and analysis of the clock distribution network for a 1.2GHz alpha microprocessor] |
Revision as of 21:30, 19 October 2012
This quarter, we will put a focus on resonant and non-traditional clocking. We will have two presenters each day -- about 30-40 min each. Please select papers on either distributed/monolithic LC, rotary clocking, or standing wave clocking or similar non-traditional clocking papers.
Date | Presenter | Topic/Paper |
---|---|---|
10/03/12 | Raj,Blake,Seokjoong | VLSI-SOC Dry Run ** Will need to start at 10:30am sharp |
10/10/12 | NONE (VLSI-SoC) | |
10/17/12 | NONE (Matt at NSF) | |
10/24/12 | Matt | How to review papers, Read the clock survey I wrote |
10/31/12 | Raj, Jeff | |
11/07/12 | NONE (Matt at ICCAD) | |
11/14/12 | Ben, Riadul | |
11/21/12 | Bin, Nihan | |
11/28/12 | Hany, Rafael | |
12/05/12 | Elnaz, Nihan |
Papers:
Uniform-phase uniform-amplitude resonant-load global clock distributions
Resonant clocking using distributed parasitic capacitance,
Jitter Characteristic in Charge Recovery Resonant Clock Distribution,
Design of resonant global clock distributions
Resonant-Clock Latch-Based Design
Variability:
Efficient coupled noise estimation for on-chip interconnects
Practical clock tree robustness signoff metrics
Process variation aware clock tree routing
SSTA:
Statistical timing analysis considering spatial correlations using a single PERT-like traversal
Statistical timing analysis using bounds and selective enumeration
First-order incremental block-based statistical timing analysis
Statistical timing analysis: From basic principles to state of the art
Statistical static timing analysis: A survey
Statistical clock skew analysis considering intra-die process variations
Statistical analysis of clock skew variation in H-tree structure
Implementation:
The clock distribution of the POWER4 microprocessor
A 5GHz duty-cycle correcting clock distribution network for the POWER6 microprocessor
Multi-GHz clocking scheme for Intel Pentium 4 microprocessor
Myth busters: Microprocessor clocking is from mars, asic’s clocking is from venus?
Clocking design and analysis for a 600-MHz Alpha microprocessor
A 300-MHz 64-b quad-issue CMOS RISC microprocessor
A 200-MHz 64-b dual-issue CMOS microprocessor
The design and analysis of the clock distribution network for a 1.2GHz alpha microprocessor